Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37061329

RESUMO

Senescence-like cell cycle arrest is a critical state of cancer initiation and progression. Senescence is an irreversible cell cycle arrest in response to stress induced by extrinsic and intrinsic stimuli, including oxidative/genotoxic stress, oncogenic activation, irradiation, mitochondrial malfunction, or chemotherapeutic drugs. Several signaling pathways are involved in senescence-like cell cycle arrest, which is primarily induced by the activation of p53/p21-dependent apoptotic pathways and suppressing p16INK4A/retinoblastoma protein (pRB)-dependent oncogenic pathways. p21 is necessary for proper cell cycle advancement, is involved in cell death, and mediates p53-dependent cell cycle arrest caused by DNA damage. pRB's role in tumor suppression is through modulation of the G1 checkpoint in the cell cycle, as it has the ability to block S-phase entry and cell growth. The aforementioned pathways are also highly interconnected with significant crosstalk, such as cyclin-dependent kinases (CDK)/cyclin complexes, and the dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex. The primary regulators of transcription are p53 and pRB, which maintain the senescent state through negative control of the cell cycle and process of tumorigenesis. Because CDK inhibitors comprise negative regulators of cell cycle progress, they are fundamental parts of each route. Prolonged overexpression of any of these four fundamental elements (p16, p53, p21, and pRB) suffices to induce senescence, demonstrating how the regulatory DREAM complex causes senescence and how its malfunction results in cell cycle progression. The present chapter aims at revealing the pivotal mechanisms behind the senescence-like cell cycle arrest in cancer.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem do Ciclo Celular , Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína do Retinoblastoma/metabolismo , Neoplasias/genética
2.
Phytomedicine ; 112: 154686, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36804755

RESUMO

BACKGROUND: Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE: Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS: A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS: In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION: Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.


Assuntos
Alcaloides , Produtos Biológicos , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Janus Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Polifenóis/farmacologia , Transdução de Sinais , Alcaloides/farmacologia
3.
Int J Nanomedicine ; 17: 299-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35095273

RESUMO

As the worldwide average life expectancy has grown, the prevalence of age-related neurodegenerative diseases (NDDs) has risen dramatically. A progressive loss of neuronal function characterizes NDDs, usually followed by neuronal death. Inflammation, apoptosis, oxidative stress, and protein misfolding are critical dysregulated signaling pathways that mainly orchestrate neuronal damage from a mechanistic point. Furthermore, in afflicted families with genetic anomalies, mutations and multiplications of α-synuclein and amyloid-related genes produce some kinds of NDDs. Overproduction of such proteins, and their excessive aggregation, have been proven in various models of neuronal malfunction and death. In this line, providing multi-target therapies carried by novel delivery systems would pave the road to control NDDs through simultaneous modulation of such dysregulated pathways. Phytochemicals are multi-target therapeutic agents, which employ several mechanisms towards neuroprotection. Besides, the blood-brain barrier (BBB) is a critical issue in managing NDDs since it inhibits the accessibility of drugs to the brain in sufficient concentration. Besides, discovering novel delivery systems is vital to improving the efficacy, bioavailability, and pharmacokinetic of therapeutic agents. Such novel formulations are also employed to improve the drug's biodistribution, allow for the co-delivery of several medicines, and offer targeted intracellular delivery against NDDs. The present review proposes nanoformulations of phytochemicals and synthetic agents to combat NDDs by modulating neuroinflammation, neuroapoptosis, neuronal oxidative stress pathways and protein misfolding.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Medicamentos Sintéticos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neuroinflamatórias , Compostos Fitoquímicos/farmacologia , Transdução de Sinais , Distribuição Tecidual
4.
Pharmacol Res ; 177: 106099, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092819

RESUMO

Neurodegenerative diseases (NDDs) are leading causes of death and morbidity in the elderly worldwide. From the mechanistic/pathological view, oxidative stress, inflammation, and apoptosis are responsible for the etiology of neuronal diseases, and play detrimental roles in neuronal cell death and neurodegenerative processes. The diverse pathophysiological pathways influencing NDDs necessitate the discovery of pivotal dysregulated signaling mediators. The current review describes essential functions of protein kinase B (Akt)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathway as possible therapeutic targets in the pathogenesis of NDDs. Consequently, finding new multi-target agents in regulating Akt/CREB/BDNF and thus associated downstream pathways is a critical factor in combating NDDs. Because of their neuroprotective properties, dietary phytochemicals have shown to be popular nutritional therapy methods. Ginsenosides, the most active ingredient of ginseng, and a secondary metabolite of steroid glycosides and triterpene saponins have been found to have a number of protective effects on the central nervous system (CNS). The protective roles of ginsenosides in CNS are potentially passing through Akt/CREB/BDNF pathway towards neuroprotective responses. In the present study, Akt/CREB/BDNF pathway is targeted by ginsenosides and associated nanoformulations towards potential neuroprotective effects.


Assuntos
Ginsenosídeos , Doenças Neurodegenerativas , Idoso , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830453

RESUMO

Parkinson's disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.


Assuntos
Alcaloides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Terpenos/uso terapêutico , Alcaloides/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Plantas/química , Plantas/metabolismo , Metabolismo Secundário/genética , Terpenos/metabolismo
6.
Metab Brain Dis ; 36(7): 1501-1521, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988807

RESUMO

As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Flavonoides/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Flavonoides/uso terapêutico , Humanos , AVC Isquêmico/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
7.
Food Chem Toxicol ; 145: 111714, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871194

RESUMO

The complex pathophysiological mechanisms behind destructive chronic conditions, including cancer, neurodegenerative diseases, diabetes mellitus, cardiovascular diseases, and hepatic failure urge the need for finding related pivotal dysregulated signaling mediators, as well as multi-target therapeutic agents. In the current study, critical roles of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, as potential therapeutic targets in the pathogenesis of various diseases has been described. This pathway is also interconnected with several downstream inflammatory, oxidative stress, and apoptotic mediators, as dysregulated pathways in chronic diseases. Therefore, identifying novel multi-target agents to attenuate PI3K/Akt, thereby related downstream pathways, is of great importance. Astaxanthin (AST) is a multi-target lipid-soluble keto-carotenoid derived from the varieties of marine organisms, with potential anti-inflammatory, antioxidant and antiapoptotic properties through PI3K/Akt pathway. Nowadays, due to its high nutritional and medicinal value, research on AST is increasing. This review aimed to address PI3K/Akt targeted by AST in several diseases toward clinical applications.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Xantofilas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...